186 research outputs found

    Sea state and rain: a second take on dual-frequency altimetry

    Get PDF
    TOPEX and Jason were the first two dual-frequency altimeters in space, with both operating at Ku- and C-band. Each thus gives two measurements of the normalized backscatter, sigma0, (from which wind speed is calculated) and two estimates of wave height. Departures from a well-defined relationship between the Ku- and C-band sigma0 values give an indication of rain.This paper investigates differences between the two instruments using data from Jason's verification phase. Jason's Ku-band estimates of wave height are ~1.8% less than TOPEX's, whereas its sigma0 values are higher. When these effects have been removed the root mean square (r.m.s.) mismatch between TOPEX and Jason's Ku-band observations is close to that for TOPEX's observations at its two frequencies, and the changes in sigma0 with varying wave height conditions are the same for the two altimeters. Rain flagging and quantitative estimates of rain rate are both based on the atmospheric attenuation derived from the sigma0 measurements at the two frequencies. The attenuation estimates of TOPEX and Jason agree very well, and a threshold of -0.5 dB is effective at removing the majority of spurious data records from the Jason GDRs. In the high sigma0 regime, anomalous data can be cause by processes other than rain. Consequently, for these low wind conditions, neither can reliable rain detection be based on altimetry alone, nor can a generic rain flag be expected to remove all suspect data

    Sea surface salinity variability from a simplified mixed layer model of the global ocean

    No full text
    International audienceA bi-dimensional mixed layer model (MLM) of the global ocean is used to investigate the sea surface salinity (SSS) balance and variability at daily to seasonal scales. Thus a simulation over an average year is performed with daily climatological forcing fields. The forcing dataset combines air-sea fluxes from a meteorological model, geostrophic currents from satellite altimeters and in situ data for river run-offs, deep temperature and salinity. The model is based on the "slab mixed layer" formulation, which allows many simplifications in the vertical mixing representation, but requires an accurate estimate for the Mixed Layer Depth. Therefore, the model MLD is obtained from an original inversion technique, by adjusting the simulated temperature to input sea surface temperature (SST) data. The geographical distribution and seasonal variability of this "effective" MLD is validated against an in situ thermocline depth. This comparison proves the model results are consistent with observations, except at high latitudes and in some parts of the equatorial band. The salinity balance can then be analysed in all the remaining areas. The annual tendency and amplitude of each of the six processes included in the model are described, whilst providing some physical explanations. A map of the dominant process shows that freshwater flux controls SSS in most tropical areas, Ekman transport in Trades regions, geostrophic advection in equatorial jets, western boundary currents and the major part of subtropical gyres, while diapycnal mixing leads over the remaining subtropical areas and at higher latitudes. At a global scale, SSS variations are primarily caused by horizontal advection (46%), then vertical entrainment (24%), freshwater flux (22%) and lateral diffusion (8%). Finally, the simulated SSS variability is compared to an in situ climatology, in terms of distribution and seasonal variability. The overall agreement is satisfying, which confirms that the salinity balance is reliable. The simulation exhibits stronger gradients and higher variability, due to its fine resolution and high frequency forcing. Moreover, the SSS variability at daily scale can be investigated from the model, revealing patterns considerably different from the seasonal cycle. Within the perspective of the future satellite missions dedicated to SSS retrieval (SMOS and Aquarius/SAC-D), the MLM could be useful for determining calibration areas, as well as providing a first-guess estimate to inversion algorithms

    Assessing a treatment on the basis of an individual or a group. An example: the homeopathic treatment of digestive-tract strongyles in sheep

    Get PDF
    Homeopathic treatments, widely used in organic farming, remain unevaluated. Assessment is difficult since the individuals that respond to treatment are not identified, although it is central to the concept of homeopathic treatment. Classifying lambs into those to be treated (since they have high parasitic infection rate or poor production performances) or that should remain untreated (in other words, even when treated, they will not benefit from treatment) is not simple. The identification of lambs to be treated can be based on parasitological examinations (eggs per gram of faeces), clinical (anaemia or diarrhoea)or production-related (weight gain) results. The classification of lambs was a posteriori and based on dendrograms using UPGMA (unweighted pairwise grouping on arithmetic average) and Gower’s similarity index. Parasitological, clinical and production identifiers were used for assessing the efficacy of Teucrium marum (9 CH) on digestive-tract strongyles. There was no reduction in gastro-intestinal infection in lambs with high infection rates or poor live weight gain

    Air-sea gas transfer velocity estimates from the Jason-1 and TOPEX altimeters : prospects for a long-term global time series

    Get PDF
    Author Posting. © Elsevier B.V., 2006. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Journal of Marine Systems 66 (2007): 173-181, doi:10.1016/j.jmarsys.2006.03.020.Estimation of global and regional air–sea fluxes of climatically important gases is a key goal of current climate research programs. Gas transfer velocities needed to compute these fluxes can be estimated by combining altimeter-derived mean square slope with an empirical relation between transfer velocity and mean square slope derived from field measurements of gas fluxes and small-scale wave spectra [Frew, N.M., Bock, E.J., Schimpf, U., Hara, T., Hauβecker, H., Edson, J.B., McGillis, W.R., Nelson, R.K., McKenna, S.P., Uz, B.M., Jähne, B., 2004. Air–sea gas transfer: Its dependence on wind stress, small-scale roughness and surface films, J. Geophys. Res., 109, C08S17, doi: 10.1029/2003JC002131.]. We previously reported initial results from a dual-frequency (Ku- and C-band) altimeter algorithm [Glover, D.M., Frew, N.M., McCue, S.J., Bock, E.J., 2002. A Multi-year Time Series of Global Gas Transfer Velocity from the TOPEX Dual Frequency, Normalized Radar Backscatter Algorithm, In: Gas Transfer at Water Surfaces, editors: Donelan, M., Drennan, W., Saltzman, E., and Wanninkhof, R., Geophysical Monograph 127, American Geophysical Union, Washington, DC, 325–331.] for estimating the air–sea gas transfer velocity (k) from the mean square slope of short wind waves (40–100 rad/m) and derived a 6-year time series of global transfer velocities based on TOPEX observations. Since the launch of the follow-on altimeter Jason-1 in December 2001 and commencement of the TOPEX/Jason-1 Tandem Mission, we have extended this time series to 12 years, with improvements to the model parameters used in our algorithm and using the latest corrected data releases. The prospect of deriving multi-year and interdecadal time series of gas transfer velocity from TOPEX, Jason-1 and follow-on altimeter missions depends on precise intercalibration of the normalized backscatter. During the Tandem Mission collinear phase, both satellites followed identical orbits with a mere 73-s time separation. The resulting collocated, near-coincident normalized radar backscatter (σ°) data from both altimeters present a unique opportunity to intercalibrate the two instruments, compare derived fields of transfer velocity and estimate the precision of the algorithm. Initial results suggest that the monthly gas transfer velocity fields generated from the two altimeters are very similar. Comparison of along-track Ku-band and C-band σ° during the collinear phase indicates that observed discrepancies are due primarily to small offsets between TOPEX and Jason-1 σ°. The Jason-1 k values have an apparent bias of + 4% relative to TOPEX, while the precision estimated from the two observation sets is 5–7% and scales with k. The resultant long-term, global, mean k is 16 cm/h.We gratefully acknowledge funding support from NASA under grant NAGW–2431 and JPL contract 961425

    A new approach to estimation of global air-sea gas transfer velocity fields using dual-frequency altimeter backscatter

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): C11003, doi:10.1029/2006JC003819.A new approach to estimating air-sea gas transfer velocities based on normalized backscatter from the dual-frequency TOPEX and Jason-1 altimeters is described. The differential scattering of Ku-band (13.6 GHz) and C-band (5.3 GHz) microwave pulses is used to isolate the contribution of small-scale waves to mean square slope and gas transfer. Mean square slope is derived for the nominal wave number range 40–100 rad m−1 by differencing mean square slope estimates computed from the normalized backscatter in each band, using a simple geometric optics model. Model parameters for calculating the differenced mean square slope over this wave number range are optimized using in situ optical slope measurements. An empirical relation between gas transfer velocity and mean square slope, also based on field measurements, is then used to derive gas transfer velocities. Initial results demonstrate that the calculated transfer velocities exhibit magnitudes and a dynamic range which are generally consistent with existing field measurements. The new algorithm is used to construct monthly global maps of gas transfer velocity and to illustrate seasonal transfer velocity variations over a 1-year period. The measurement precision estimated from >106 duplicate observations of the sea surface by TOPEX and Jason-1 altimeters orbiting in tandem is better than 10%. The estimated overall uncertainty of the method is ±30%. The long-term global, area-weighted, Schmidt number corrected, mean gas transfer velocity is 13.7 ± 4.1 cm h−1. The new approach, based on surface roughness, represents a potential alternative to commonly used parameterizations based on wind speed.Financial support for this research from the National Aeronautics and Space Administration through Jet Propulsion Laboratory contract 961425 and the NOAA Global Carbon Cycle Program under grant NA16GP2918, Office of Global Programs is gratefully acknowledged

    Role of Interleukin 17 in arthritis chronicity through survival of synoviocytes via regulation of synoviolin expression

    Get PDF
    Background: The use of TNF inhibitors has been a major progress in the treatment of chronic inflammation. However, not all patients respond. In addition, response will be often lost when treatment is stopped. These clinical aspects indicate that other cytokines might be involved and we focus here on the role of IL-17. In addition, the chronic nature of joint inflammation may contribute to reduced response and enhanced chronicity. Therefore we studied the capacity of IL-17 to regulate synoviolin, an E3 ubiquitin ligase implicated in synovial hyperplasia in human rheumatoid arthritis (RA) FLS and in chronic reactivated streptococcal cell wall (SCW)-induced arthritis.<p></p> Methodology/Principal Findings: Chronic reactivated SCW-induced arthritis was examined in IL-17R deficient and wild-type mice. Synoviolin expression was analysed by real-time RT-PCR, Western Blot or immunostaining in RA FLS and tissue, and p53 assessed by Western Blot. Apoptosis was detected by annexin V/propidium iodide staining, SS DNA apoptosis ELISA kit or TUNEL staining and proliferation by PCNA staining. IL-17 receptor A (IL-17RA), IL-17 receptor C (IL-17-RC) or synoviolin inhibition were achieved by small interfering RNA (siRNA) or neutralizing antibodies. IL-17 induced sustained synoviolin expression in RA FLS. Sodium nitroprusside (SNP)-induced RA FLS apoptosis was associated with reduced synoviolin expression and was rescued by IL-17 treatment with a corresponding increase in synoviolin expression. IL-17RC or IL-17RA RNA interference increased SNP-induced apoptosis, and decreased IL-17-induced synoviolin. IL-17 rescued RA FLS from apoptosis induced by synoviolin knockdown. IL-17 and TNF had additive effects on synoviolin expression and protection against apoptosis induced by synoviolin knowndown. In IL-17R deficient mice, a decrease in arthritis severity was characterized by increased synovial apoptosis, reduced proliferation and a marked reduction in synoviolin expression. A distinct absence of synoviolin expressing germinal centres in IL-17R deficient mice contrasted with synoviolin positive B cells and Th17 cells in synovial germinal centre-like structures.<p></p> Conclusion/Significance: IL-17 induction of synoviolin may contribute at least in part to RA chronicity by prolonging the survival of RA FLS and immune cells in germinal centre reactions. These results extend the role of IL-17 to synovial hyperplasia.<p></p&gt

    The "ram effect": new insights into neural modulation of the gonadotropic axis by male odors and socio-sexual interactions

    Get PDF
    Reproduction in mammals is controlled by the hypothalamo-pituitary-gonadal (HPG) axis under the influence of external and internal factors such as photoperiod, stress, nutrition, and social interactions. Sheep are seasonal breeders and stop mating when day length is increasing (anestrus). However, interactions with a sexually active ram during this period can override the steroid negative feedback responsible for the anoestrus state, stimulate LH secretion and eventually reinstate cyclicity. This is known as the ram effect and research into the mechanisms underlying it is shedding new light on HPG axis regulation. The first step in the ram effect is increased LH pulsatile secretion in anestrus ewes exposed to a sexually active male or only to its fleece, the latter finding indicating a pheromone-like effect. Estradiol secretion increases in all ewes and this eventually induces a LH surge and ovulation, just as during the breeding season. An exception is a minority of ewes that exhibit a precocious LH surge (within 4h) with no prior increase in estradiol. The main olfactory system and the cortical nucleus of the amygdala are critical brain structures in mediating the ram effect since it is blocked by their inactivation. Sexual experience is also important since activation (increased c-fos expression) in these and other regions is greatly reduced in sexually naïve ewes. In adult ewes kisspeptin neurons in both arcuate and preoptic regions and some preoptic GnRH neurons are activated 2h after exposure to a ram. Exposure to rams also activates noradrenergic neurons in the locus coeruleus and A1 nucleus and increased noradrenalin release occurs in the posterior preoptic area. Pharmacological modulation of this system modifies LH secretion in response to the male or his odor. Together these results show that the ram effect can be a fruitful model to promote both a better understanding of the neural and hormonal regulation of the HPG axis in general and also the spe

    In Antisynthetase Syndrome, ACPA Are Associated With Severe and Erosive Arthritis: An Overlapping Rheumatoid Arthritis and Antisynthetase Syndrome

    Get PDF
    International audienceAbstract: Anticitrullinated peptide/protein antibodies (ACPA), which are highly specific for rheumatoid arthritis (RA), may be found in some patients with other systemic autoimmune diseases. The clinical significance of ACPA in patients with antisynthetase syndrome (ASS), a systemic disease characterized by the association of myositis, interstitial lung disease, polyarthralgia, and/or polyarthritis, has not yet been evaluated with regard to phenotype, prognosis, and response to treatment. ACPA-positive ASS patients were first identified among a French multicenter registry of patients with ASS. Additionally, all French rheumatology and internal medicine practitioners registered on the Club Rhumatismes et Inflammation web site were asked to report their observations of ASS patients with ACPA. The 17 collected patients were retrospectively studied using a standardized questionnaire and compared with 34 unselected ACPA-negative ASS patients in a case–control study. All ACPA-positive ASS patients suffered from arthritis versus 41% in the control group (P 7-year mean follow-up, extra-articular outcomes and survival were not different. ACPA-positive ASS patients showed an overlapping RA–ASS syndrome, were at high risk of refractory erosive arthritis, and might experience ASS flare when treated with antitumor necrosis factor drugs. In contrast, other biologics such as anti-CD20 mAb were effective in this context, without worsening systemic involvements
    • …
    corecore